
Dynamic Rate Limiting in an ISP Setting

David Newall

Tellurian Pty Ltd

ABSTRACT

How can a small ISP offer unlimited, high speed downloads, for a fixed, monthly
fee, and avoid going broke? Tellurian operates a small ISP, rebel.net.au,and the answer,
at least for us, is that it can’t—but we can come acceptably close.

Having commissioned a new, high speed, pay-per-byte link, we naturally want our
subscribers to enjoy its full benefit, but we also need to control our costs.The solution
that we implemented counts bytes downloaded by each subscriber, and rate limits their
connection when they reach a download cap.Our subscribers can continue to use the
Internet, even after they hav ereached the cap, but data arrives much more slowly. The
limited service means they can continue to work, but gives them a strong incentive to fin-
ish quickly and log off.

A monitor is notified, by PPP, at the start and end of each session.It records the
number of bytes downloaded at five minute intervals. Whena subscriber reaches the
download cap (or if they are already at that level at the start of their session) the monitor
installs a rate limiting rule into our router. The five-minute usage records are kept for
seven days, thus a large download today will count toward the cap for a complete week.
This removes any benefit in ‘hoarding’ downloads until the end of the week, and helps
smooth network use.

Subscribers view their current usage records via a web page.The number of bytes
downloaded during the previous seven days is displayed in a cumulative graph. Sub-
scribers use this to plan their Internet use.

The system has proven successful. Mostusers never even noticing it, yet consump-
tion has dropped by 30%, and almost no adverse comments have been received.

XXIII, August, MMI

Dynamic Rate Limiting in an ISP Setting

David Newall

Tellurian Pty Ltd

Introduction

How can a small ISP offer unlimited, high speed downloads, for a fixed, monthly fee, and avoid
going broke? Thisis a vexing issue for many ISPs. Subscriberswant unrestricted modem access with no
engaged signal; high speed transfers with no download quota; and all for a small, fixed, monthly fee.As
the operator ofrebel.net.au,we would like to be able to meet these needs, but we cannot.We can, however,
come acceptably close.

In this paper I focus on subscribers’ desire for unlimited quantities of data.In particular, I describe
how we introduce a ‘speed limit’ on subscribers when they reach a download cap.The speed limit makes
Internet use painfully slow, but is sufficient to continue working. Fromthe perspective of the subscriber,
slow is infinitely better than zero, and much preferred to paying punitive excess-download fees.

History

Our service started with a ‘permanent’ 64Kbps ISDN link, for which we paid a fixed, monthly fee,
regardless of how much data we brought in.This permitted us to totally ignore the quantity of data con-
sumed by each of our subscribers.We later realised that it was a mistake to be so unconcerned by our sub-
scribers’ download volumes. Whilewe had few modems—we started with just two—it was barely possible
to saturate the link, and performance was very good.As our subscriber-base grew, so too did the size of our
modem pool.When we had six modems, performance was sometimes bad, but mostly okay. By the time
we grew to ten modems, performance was quite terrible most of the time.

In December, 2000, we decided to upgrade our Internet link.256Kbps was the minimum speed we
felt we could live with, and more would be better. We eventually ordered a 2Mbps fibre service, with data
charged per Mbyte downloaded. Even if consumption remained the same, our total data cost would double,
but we were certain that the 32-fold increase in bandwidth would result in a significant increase in con-
sumption. We estimated that our costs would triple unless we took steps to control usage.

Solution

We dev eloped a dynamic rate limiting system.It is comprised of a rate limiter and a usage monitor,
plus some utilities and a web page.

The Rate Limiter

Our router uses FreeBSD, which includes an IP firewall and traffic shaper, ipfw, as standard. Anipfw
configuration is made up of a list of numbered rules, which is scanned for each packet until a match is
found. Aswe also use our border router as a firewall, we divide the rule number-range into three sections,
with the rate limit rules appearing before the firewall rules. All packets matched by rate limit rules are sub-
sequently processed by the firewall rules.

We wrote a program,limit, to install, list and remove rate limit rules in the router. It is started by
inetd, and supports a limited vocabulary: HELP, LOGIN, BYE, and ADD, REMOVE, CLEAR and LIST.
The HELP command displays a brief help message.The LOGIN command is used to authenticate the
remote user. The BYE command terminates the session, leaving all rate limits intact.The ADD and
REMOVE commands insert or remove limits for specified hosts.Requests to add an existing limit, or to
remove a non-existent limit, are silently ignored.The CLEAR command removes all rate limits. The LIST
command displays the rate-limited addresses.

-2-

Rate limit rules are simple.They match packets destined for the target address, that are received on
the external network interface. Matchingpackets are passed through a rate limiting pipe, there being a sep-
arate pipe for each rule.The rate limiter assigns and configures the pipes, setting them to 3Kbps bandwidth
and 10KByte size.This permits approximately 300 bytes per second transfer rate, which is unashamedly
slow: the goal is, after all, to limit subscribers’ usage.

The Monitor

The usage monitor, byteshare, measures and records traffic volumes on all PPP devices, and sends
commands tolimit to install and remove rate limits as usage exceeds and falls below the cap. Byteshare
reads a usage file to determine past usage for all subscribers, and adds to the total (and to the file) as they
download data.

At start-up, it constructs an in-memory usage table, which contains each users quota and the usage
recorded to date.This table is constructed by reading/etc/passwd, a quota file, and a usage file, and then
scans the/var/run directory to determine which PPP units are in use, and by whom.Finally, it interrogates
each active PPP unit to determine the number of bytes already transferred during current sessions.

Byteshare maintains a named socket, which PPP uses to signal start or end of sessions.Whenever a
session starts or ends, the PPPip-up and ip-down scripts write the PPP unit number, login name and IP
address to that socket, as well as to a file in/var/run. Byteshare needs this information to associate the cor-
rect subscriber with their current IP address and PPP unit.

Ever five minutes,byteshare interrogates all active PPP units, updating both the in-memory usage
table and the on-disk usage file.Each record in the usage file stores the subscribers’ UID, the system clock
and the number of bytes transferred in and out since the last measurement.When a subscriber exceeds his
or her quota a rate limit rule is inserted in the router. Rate limits are also inserted or removed, as required,
at session start time.

Although byteshare records inbound traffic separately from outbound, we only use inbound for rate
limit purposes.

Security

The rate limiter requires a one-time challenge-response style login to be completed before any of the
rate management commands may be used.A challenge is generated based on the process ID, the system
clock, and a sequence number which is incremented with every authentication attempt.This challenge is
presented to the caller, who must use a shared, private secret to calculate the correct response.This
response is returned in the LOGIN command.If the response is wrong a new challenge is presented.

A 64 bit message authentication code (MAC) is produced from the challenge, using DES in cipher
block chaining (CBC) mode.This MAC is formatted as an eleven character string by mapping each con-
secutive six bits onto the 64 character alphabet comprised of dot, slash, the ten digits, the upper case letters
and the lower case letters.The last character is produced by padding the MAC with two zero-bits.

The first eight bytes of the secret are used for the DES key and the second are used for the initialisa-
tion vector. If the secret is shorter than 16 bytes long it is padded with NULs.

The DES CBC MAC code was derived from the BSDbdes1,2 utility.

Utilities

We wrote three utilities to assist in management of the usage file.Byteconvert converts a usage file
from binary to display format, or vice versa. Inthe style offixwtmp, this utility can be used to patch a file
should it become faulty.

Byteusagesummarises a usage file, displaying the total number of bytes transferred for each user, or
for a specified subset of users, and optionally displays each individual usage record.

Finally, prunelog splits a usage file into two separate files, one containing records older than a nomi-
nated age, and the other containing records younger than that age.After splitting the usage file, the original
file is removed, the file containing the most recent records is renamed to replace it, andbyteshare is
restarted. Thisis the process by which usage records are retired from quota caluclations.We prune the

-3-

$ byteconvert -n < /var/local/bytes
544 997972561 343788 86631
602 997972561 605 435
...
543 997972561 5382 2058
$ echo "199 Fri Aug 17 00:07:06 2001 123 456" | \

byteconvert -b >> /var/local/bytes

Sample use ofbyteconvert

$ byteusage | sort +1n
USER IN OUT
flamencoareti 9846 8173
cpjpm 21822 22467
john 59462 16210
...
crowther 41890405 4715042
susannes 56843875 2977139

$ byteusage -v davidn
USER TIME IN OUT
davidn Sat Aug 18 18:03:06 2001 52 0
davidn Sat Aug 18 18:07:33 2001 120505 7555
...
davidn Thu Aug 23 07:52:55 2001 40959 3050
USER IN OUT
davidn 1887318 317019

Sample output frombyteusage

usage file three times per day, keeping only the most recent seven days of data each time.

Rather than require old records to be removed from the usage file so frequently, it would be better if
byteshare maintained a second file descriptor pointing to the oldest, current record, and read and subtracted
records from current usage as they reached seven days. Thereis no reason not to do it this way, and a
future version will incorporate this improvement.

Web Page

Although it is obvious to subscribers when they hav ebeen rate limited, we never the less provide a
CGI web page to permit them to view their current recorded usage.This is a single, very simple, Bourne
shell script. It determines the subscriber’s login name usingwho, retrieves their current usage records using
byteconvert, and processes the data using a one lineawk program, which produces cumulative values that
are graphed using GNU’s plotutils Data is never more than five minutes out of date, that being the period of
time between updates of the usage file.

Subscriber’s report that this page is useful for planning their Internet use.

Tuning

The purpose of this system is to avoid going broke, and it is important to make sure that tunable
parameters are set appropriately. The two major parameters are the download cap, which determines the
dollar value of high speed data, and the rate-limited bandwidth, which determines the dollar value of excess
data. Atprevailing wholesale rates of 10 to 20 cents per megabyte, excess data can cost a maximum of

30days× 86400seconds× 300bytes

1000000
× $0. 20= $155. 40

-4-

Web page showing subscriber’s current usage

per subscriber per month.With typical monthly fees being $20 to $30, subscribers could send an ISP broke
just on excess data, however performance when rate limited really is so slow that this does not seem to be a
problem. Shouldthis become a problem, a simple solution would be to modifylimit so that all rate limit
rules pass packets through a single pipe, instead of through one pipe per IP address, thus the cost would be
a maximum of $155.40 per month for all subscribers.

We giv e a monthly quota of 150Mbytes.The next issue is whether to give this all at once, or to dole
it out in smaller quantities.Is it better to permit subscribers to use their download allowance in one day,
and for them to have lousy speed for the next 30 days, or to give them a smaller download allowance and a
correspondingly smaller time before that allowance is renewed? Thisis a user-satisfaction issue, and is the
sort of question which elicits many different answers.We choose to split the monthly quota into four
weekly quotas of 63Mbytes each, which seems a good balance.It keeps the time before quota is regener-
ated fairly short, yet provides an amount of data sufficient to download quite large files.

Results

The system has proven very successful.We hav erecorded a dramatic drop in consumption, starting
when we introduced rate limiting.Prior to rate limiting we were bringing in 300 to 400Mbytes of data per
day. In mid June the numbers drop to 200 to 250Mbytes per day, and continued to decline the current vol-
ume of 100 to 200Mbytes per day.

Such a dramatic decrease called for investigation. Hadwe completely misjudged what effect rate
limiting would have on our subscribers?In fact we had not.We discovered that one subscriber stayed
online for about twenty hours every day, and this had been the case for a considerable period of time.This
was within the bounds of our ‘fair share’ policy, and we would not have been concerned even if we had

-5-

known about it. He was also transferring data, more or less constantly, which equated to about 180 Mbytes
ev ery day. With dynamic rate limiting, he was restricted to about 20 Mbytes per day.

We pre-announced the rate limiter to ensure that our subscribers would know what to expect. This
particular user did indeed notice the effect fairly quickly. He logged off for a few hours on day three.
(Notice the dip at June 15 in the graph, below.) On the evening June 18 he logged off again and remained
off all night. The next morning, at 7.45am, he logged on again, saw that he was still rate limited, and
logged off again. Hewas online for a mere two minutes. We considered that to be a success!

Volume Downloaded by Biggest User

June

M
B

13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29

0

50

100

150

daily

cumulative

quota

References
1 Source code is distributed with FreeBSD in the directory, /usr/src/secure/usr.bin/bdes.
2 Matt Bishop,Implementation Notes on bdes(1), Technical Report PCS-TR-91-158, Department of Math-

ematics and Computer Science, Dartmouth College, Hanover, NH 03755 (Apr. 1991).

