
PostScript
®

UNICODE EXTENSION REFERENCE

davidnewall.com

PostScript is a registered trademark of Adobe Systems Incorporated. All instances of the name PostScript in the text

are references to the PostScript language as defined by Adobe Systems Incorporated unless otherwise stated. The

name PostScript also is used as a product trademark for Adobe Systems’ implementation of the PostScript language

interpreter.

Adobe and PostScript are trademarks of Adobe Systems Incorporated. Unicode is a registered trademark of Unicode,

Inc. All other trademarks are the property of their respective owners.

This publication and the information herein are furnished AS IS, are subject to change without notice, and should not

be construed as a commitment by davidnewall.com nor Adobe Systems Incorporated. davidnewall.com and Adobe

Systems Incorporated assume no responsibility or liability for any errors or inaccuracies, makes no warranty of any

kind (express, implied, or statutory) with respect to this publication, and expressly disclaims any and all warranties of

merchantability, fitness for particular purposes, and noninfringement of third-party rights.

1

Introduction

This document contains detailed information about extensions to the PostScript language to support Unicode and

UTF-8-encoded strings. They are designed to feel familiar to PostScript programmers, with a ushow extension

corresponding to each show operator.

The layout of this document should also be familiar to PostScript programmers as it is similar to Adobe Systems’

PostScript Language Reference (3rd edition), and the detailed descriptions of the extensions are mostly the same as the

corresponding show operators.

A string is a sequence of 8-bit values, however, Unicode defines over one million code points and so ushow operators

take an array of integers (Unicode code points or values) instead of a string.

Fonts in PostScript almost always contain thousands of glyphs, with up to 256 of them mapped via the Encoding

array for use by the show operators. No corresponding map exists for Unicode, so the PostScript programmer must

provide one along with the array of Unicode values when calling a ushow extension.

Few fonts, if any, contain glyphs for every Unicode code point and it would be highly wasteful of space to use an array

for the Unicode map, even were it technically possible (PostScript implementations typically restrict arrays to 65,535

elements). For this reason, code points are mapped to glyphs using a dictionary, with the Unicode value as the key and

the glyph name (or an array of names) as the value.

There is no fixed standard for glyph names in fonts. Although most fonts use the same names for ASCII glyphs, they

often use different names for other glyphs. For this reason, a specific map needs to be created for each font used.

Fontforge (https://fontforge.org) can extract a list of a font’s glyph names and corresponding Unicode values. It does

this when saving a font in .otf or .ttf format with the “output glyph map” option enabled. This instructs Fontforge to

create a .g2n file which can easily be converted to a Unicode map, for example with the following awk script:

BEGIN {print "<<"}

/GLYPHID .*PSNAME .*UNICODE/ {print "16#"$6"/"$4}

END {print ">> readonly"}

Adobe published a glyph list (“AGL”) which they intended to be used to determine the Unicode value corresponding to

various glyph names. It can be reversed to create an encoding map, but this is not recommended. It maps a mere 3,680

code points whereas tens of thousands are needed to cover just the common written languages. Further, many fonts use

different names than AGL and include glyphs which are not listed in it. Using AGL may seem easy but is likely to

result in characters not being painted even though they are present in the font.

Despite this recommendation, some programmers will use AGL, which complicates matters because it lists multiple

names for some Unicode values. (This is why the map passed to unicodeshow can contain either a name or array of

names for any Unicode value.)

2

Introduction

This document is divided into two sections:

• Section 1 gives a summary of the extensions.

• Section 2 provides detailed descriptions of all extensions.

Each description is presented in the same format as the PostScript Language Reference:

extension argument
1
 ... argument

n
 extension result

1
 ... result

m

A detailed explanation of the extension.

Example

An example of the use of this extension.

The symbol ⇒ designates the values left on the operand stack by the example.

Errors: A list of errors that this extension might execute

See Also: A list of related extensions

At the head of an extension description, argument
1
 through argument

n
 are the arguments that the extension requires,

with argument
n
 being the topmost element on the operand stack. The extension pops these objects from the operand

stack and consumes them; then it executes. After executing, the extension leaves the objects result
1
 through result

m

on the stack, with result
m

 being the topmost element.

Normally, the operand and result names suggest either their types or their uses. The following table explains the names

which are peculiar to these extensions:

NAME DESCRIPTION

map A dictionary which maps Unicode values to glyph names

unicode An array of Unicode code points

3

SECTION 1

Unicode Extension Summary

string utf8decode unicode decode UTF-8 string giving array of Unicode values

map unicode ushow - paint glyphs for unicode in current font

a
x
 a

y
 map unicode aushow - Add (a

x
, a

y
) to width of each glyph while showing

unicode

c
x
 c

y
 int map unicode widthushow - Add (c

x
, c

y
) to width of glyph for int while showing

unicode

c
x
 c

y
 int a

x
 a

y
 map unicode awidthushow - Combine effects of aushow and widthushow

map unicode numarray|numstring xushow - Paint glyphs for unicode using x widths in

numarray|numstring

map unicode numarray|numstring xyushow - Paint glyphs for unicode using x and y widths in

numarray|numstring

map unicode numarray|numstring yushow - Paint glyphs for unicode using y widths in

numarray|numstring

map unicode ustringwidth w
x
 w

y
Return width of glyphs for unicode in current font

proc unicode kushow - Execute proc between glyphs shown from unicode

4

SECTION 2

Unicode Extension Details

aushow a
x
 a

y
 map unicode aushow -

Paints glyphs for the Unicode values in unicode in a manner similar to ushow; however, while

doing so, aushow adjusts the width of each glyph shown by adding a
x
 to the glyph’s x width and

a
y
 to its y width, thus modifying the spacing between glyphs. The numbers a

x
 and a

y
 are x and

y displacements in the user coordinate system, not in the glyph coordinate system.

This extension enables fitting a string of text to a specific width by adjusting all the spacing

between glyphs by a uniform amount. For a discussion of glyph widths, see Section 5.4, “Glyph

Metric Information” of PostScript Language Reference.

Example

AdobeGlyphList dup length dict begin {

 exch [exch currentdict 3 index known

 {currentdict 3 index get aload pop}

 if] def

} forall currentdict end /Map exch def

/Helvetica 8 selectfont

14 67 moveto

“NormalSpace” Map [8220 78 111 114 109 97 108 83 112 97 99 101 8221] ushow

14 47 moveto 4 0

“ W i d e S p a c e ” Map [8220 87 105 100 101 83 112 97 99 101 8221] aushow

Errors: invalidfont, nocurrentpoint, typecheck

See Also: auwidthshow, kushow, ushow, widthushow, xushow, xyushow, yushow

5

Section 2 Unicode Extension Details

awidthushow c
x
 c

y
 int a

x
 a

y
 map unicode awidthushow -

Paints glyphs for the Unicode values in unicode in a manner similar to ushow, but combines the

special effects of aushow and widthushow. awidthushow adjusts the width of each glyph

shown by adding a
x
 to its x width and a

y
 to its y width, thus modifying the spacing between

glyphs. Furthermore, awidthushow modifies the width of each occurrence of the glyph for the

Unicode value int by an additional amount (c
x
, c

y
).

This extension enables fitting a string of text to a specific width by adjusting the spacing between

all glyphs by a uniform amount, while independently controlling the width of the glyph for a

specific character, such as the space. For a discussion of glyph widths, see Section 5.4, “Glyph

Metric Information” of PostScript Language Reference.

Example

AdobeGlyphList dup length dict begin {

 exch [exch currentdict 3 index known

 {currentdict 3 index get aload pop}

 if] def

} forall currentdict end /Map exch def

/Helvetica 8 selectfont

14 67 moveto

“Normal Space” Map [8220 78 111 114 109 97 108 32 83 112 97 99 101 8221] ushow

14 47 moveto

5 0 16#20 2 0

“ W i d e S p a c e ” Map [8220 87 105 100 101 32 83 112 97 99 101 8221] awidthushow

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aushow, kushow, ushow, widthushow, xushow, xyushow, yushow

kushow proc map unicode kushow -

Paints glyphs for the Unicode values in unicode in a manner similar to ushow, but allows

program intervention between characters. If the values in unicode are int
0
, int

1
, ... int

n
, kushow

proceeds as follows: First it shows the glyph for int
0
 at the current point, updating the current

point by the width of that glyph. Then it pushes int
0
 and int

1
 on the operand stack and executes

proc. proc may perform any actions it wishes; typically, it will modify the current point to affect

the subsequent placement of the glyph for int
1
. kushow continues by showing the glyph for int

1
,

pushing int
1
 and int

2
 on the stack, executing proc, and so on. It finishes by pushing int

n–1
 and

int
n
 on the stack, executing proc, and finally showing the glyph for int

n
.

When proc is called for the first time, the graphics state (in particular, the current transformation

matrix) is the same as it was at the time kushow was invoked, except that the current point has

been updated by the width of the glyph for int
0
. Execution of proc is permitted to have any side

effects, including changes to the graphics state. Such changes persist from one call of proc to the

next and may affect graphical output for the remainder of kushow’s execution and afterward.

When proc completes execution, the value of currentfont is restored. The name kushow is

derived from “kern-show.” To kern glyphs is to adjust the spacing between adjacent glyphs in

order to achieve a visually pleasing result. The kushow operator enables user-defined kerning

and other manipulations, because arbitrary computations can be performed between pairs of

glyphs.

kushow can be applied only to base fonts. An invalidfont error occurs if the current font is a

composite font, a CIDFont, or defines neither CharProcs not CharStrings.

6

Section 2 Unicode Extension Details

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aushow, awidthushow, kushow, ushow, widthushow, xushow,

xyushow, yushow

ushow map unicode ushow -

Paints glyphs for the Unicode values in unicode on the current page starting at the current point,

using the font face, size, and orientation specified by the current font (as returned by

currentfont).

map maps Unicode values to potential glyph names, either as a single name or an array of names.

The current font’s CharStrings dictionary is searched for each potential glyph name, and the

first glyph found is selected. If the current font has no CharStrings dictionary, it’s CharProcs

dictionary is used instead. An invalidfont error occurs if the font has neither CharStrings nor

CharProcs.

If a Unicode value is not mapped by map, or if none of the potential glyph names appears in the

font’s CharStrings dictionary, uniXXXX is used as a fallback name for values less than

16#10000 and uXXXXXXXX for values of 16#10000 and over, where XXXXXX is the value in

hexadecimal.

The spacing from each glyph to the next is determined by the glyph’s width, which is an (x, y)

displacement that is part of the glyph description. When it is finished, ushow adjusts the current

point in the graphics state by the sum of the widths of all the glyphs shown. ushow requires that

the current point initially be defined (for example, by moveto); otherwise, a nocurrentpoint

error occurs.

See Chapter 5 of PostScript Language Reference for complete information about the definition,

manipulation, and rendition of fonts.

Errors: invalidfont, nocurrentpoint, typecheck

See Also: moveto, setfont, aushow, auwidthshow, kushow, widthushow, xushow,

xyushow, yushow

ustringwidth map unicode ustringwidth w
x
 w

y

Calculates the change in the current point that would occur if map and unicode were given as

operands to ushow with the current font. w
x
 and w

y
 are computed by adding together the width

vectors of all the individual glyphs for unicode and converting the result to user space. They

form a distance vector in the x and y dimensions describing the width of the glyphs for the entire

string in user space. See Section 5.4, “Glyph Metric Information,” of PostScript Language

Reference for a discussion of glyph widths.

To obtain the glyph widths, ustringwidth executes the descriptions of one or more of the glyphs

in the current font and may cause the results to be placed in the font cache. However,

ustringwidth prevents the graphics operators that are executed from painting anything onto the

current page.

Note that the width returned by ustringwidth is defined as movement of the current point. It has

nothing to do with the dimensions of the glyph outlines (see charpath and pathbbox).

Errors: invalidfont, typecheck

See Also: setfont, ushow

7

Section 2 Unicode Extension Details

utf8decode string utf8decode unicode

Returns an array object containing Unicode values decoded from string, which is encoded using

UTF-8 variable-width character encoding. Invalid UTF-8 sequences are replaced with Unicode

Character ‘REPLACEMENT CHARACTER’ (U+FFFD).

Example

(\342\200\234UTF-8\342\200\235) utf8decode ⇒ [8220 85 84 70 45 56 8221]

widthushow c
x
 c

y
 int map unicode widthushow -

Paints glyphs for the Unicode values in unicode in a manner similar to ushow; however, while

doing so, it adjusts the width of each occurrence of the glyph for Unicode value int shown by

adding c
x
 to its x width and c

y
 to its y width, thus modifying the spacing between it and the next

glyph. This operator enables fitting a string of text to a specific width by adjusting the width of

the glyph for a specific character, such as the space character.

Example

AdobeGlyphList dup length dict begin {

 exch [exch currentdict 3 index known

 {currentdict 3 index get aload pop}

 if] def

} forall currentdict end /Map exch def

/Helvetica 8 selectfont

14 67 moveto

“Normal Space” Map [8220 78 111 114 109 97 108 32 83 112 97 99 101 8221] ushow

14 47 moveto 6 0 16#20

“Wide Space” Map [8220 87 105 100 101 32 83 112 97 99 101 8221] widthushow

Errors: invalidfont, nocurrentpoint, typecheck

See Also: aushow, auwidthshow, kushow, ushow, xushow, xyushow, yushow,

ustringwidth

xushow map unicode numarray xushow -

xushow map unicode numstring xushow -

Is similar to xyushow; however, for each glyph shown, xushow extracts only one number from

numarray or numstring. It uses that number as the x displacement and the value 0 as the y

displacement. In all other respects, xushow behaves the same as xyushow.

Errors: invalidfont, nocurrentpoint, typecheck

See Also: ushow, xyushow, yushow

xyushow map unicode numarray xyushow -

xyushow map unicode numstring xyushow -

Paints glyphs for the Unicode values in unicode in a manner similar to ushow. After painting

each glyph, it extracts two successive numbers from the array numarray or the encoded number

string numstring. These two numbers, interpreted in user space, determine the position of the

origin of the next glyph relative to the origin of the glyph just shown. The first number is the x

8

Section 2 Unicode Extension Details

displacement and the second number is the y displacement. In other words, the two numbers

override the glyph’s normal width.

If numarray or numstring is exhausted before all values in unicode have been shown, a

rangecheck error occurs. See Section 5.1.4, “Glyph Positioning,” in PostScript Language

Reference for information about xyshow, and Section 3.14.5, “Encoded Number Strings,” for an

explanation of the numstring operand.

Errors: invalidfont, nocurrentpoint, rangecheck, typecheck

See Also: ushow, xushow, yushow

yushow map unicode numarray yushow -

yushow map unicode numstring yushow -

Is similar to xyushow; however, for each glyph shown, yushow extracts only one number from

numarray or numstring. It uses that number as the y displacement and the value 0 as the x

displacement. In all other respects, yushow behaves the same as xushow.

Errors: invalidfont, nocurrentpoint, rangecheck, typecheck

See Also: ushow, xyushow, yushow

